Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Exp Brain Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526741

RESUMEN

Working memory (WM) can influence selective attention. However, the effect of WM load on postural standing tasks has been poorly understood, even though these tasks require attentional resources. The purpose of this study was to examine whether WM load would impact anticipatory postural adjustments (APAs) during step initiation. Sixteen healthy young adults performed stepping tasks alone or concurrently with a WM task in a dual-task design. The stepping tasks involved volitional stepping movements in response to visual stimuli and comprised of simple and choice reaction time tasks and the Flanker task which consisted of congruent and incongruent (INC) conditions. In the dual-task condition, subjects were required to memorize either one or six digits before each stepping trial. Incorrect weight transfer prior to foot-lift, termed APA errors, reaction time (RT), and foot-lift time were measured from the vertical force data. The results showed that APA error rate was significantly higher when memorizing six-digit than one-digit numerals in the INC condition. In addition, RT and foot-lift time were significantly longer in the INC condition compared to the other stepping conditions, while there was no significant effect of WM load on RT or foot-lift time. These findings suggest that high WM load reduces the cognitive resources needed for selective attention and decision making during step initiation.

2.
Front Hum Neurosci ; 17: 1298761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111674

RESUMEN

Background: Transcranial static magnetic stimulation (tSMS) is a non-invasive brain stimulation technique that place a strong neodymium magnet on scalp to reduce cortical excitability. We have recently developed a new tSMS device with three magnets placed close to each other (triple tSMS) and confirmed that this new device can produce a stronger and broader static magnetic field than the conventional single tSMS. The aim of the present study was to investigate the effect of the conventional single tSMS as well as triple tSMS over the unilateral or bilateral motor association cortex (MAC) on simple and choice reaction time (SRT and CRT) task performance. Methods: There were two experiments: one involved the conventional tSMS, and the other involved the triple tSMS. In both experiments, right-handed healthy participants received each of the following stimulations for 20 min on different days: tSMS over the unilateral (left) MAC, tSMS over the bilateral MAC, and sham stimulation. The center of the stimulation device was set at the premotor cortex. The participants performed SRT and CRT tasks before, immediately after, and 15 min after the stimulation (Pre, Post 0, and Post 15). We evaluated RT, standard deviation (SD) of RT, and accuracy (error rate). Simulation was also performed to determine the spatial distribution of magnetic field induced by tSMS over the bilateral MAC. Results: The spatial distribution of induced magnetic field was centered around the PMd for both tSMS systems, and the magnetic field reached multiple regions of the MAC as well as the sensorimotor cortices for triple tSMS. SD of CRT was significantly larger at Post 0 as compared to Pre when triple tSMS was applied to the bilateral MAC. No significant findings were noted for the other conditions or variables. Discussion: We found that single tSMS over the unilateral or bilateral MAC did not affect performance of RT tasks, whereas triple tSMS over the bilateral MAC but not over the unilateral MAC increased variability of CRT. Our finding suggests that RT task performance can be modulated using triple tSMS.

3.
Somatosens Mot Res ; : 1-11, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145411

RESUMEN

PURPOSE: This study aimed to identify the contribution of the common synaptic drives to motor units during obstacle avoidance, using coherence analysis between a-pair electromyography (EMG) signals (EMG-EMG coherence). MATERIALS AND METHODS: Fourteen healthy volunteers walked on a treadmill with and without obstacle avoidance. During obstacle gait, subjects were instructed to step over an obstacle with their right leg while walking that would randomly and unpredictably appear. Surface EMG signals were recorded from the following muscles of the right leg: the proximal and distal ends of tibialis anterior (TAp and TAd), biceps femoris (BF), semitendinosus (ST), lateral gastrocnemius (LG), and medial gastrocnemius (MG). Beta-band (13-30 Hz) EMG-EMG coherence was analysed. RESULTS: Beta-band EMG-EMG coherence of TAp-TAd during swing phase and BF-ST during pre and initial swing phase when stepping over an obstacle were significantly higher compared to normal gait (both p < 0.05). Beta-band EMG-EMG coherence of TAp-TAd, BF-ST, and LG-MG during stance phase were not significantly different between the two gait conditions (all p > 0.05). CONCLUSIONS: The present findings suggest increased common synaptic drives to motor units in ankle dorsiflexor and knee flexor muscles during obstacle avoidance. It also may reflect an increased cortical contribution to modify the gait patterns to avoid an obstacle.

4.
Cortex ; 169: 203-219, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948875

RESUMEN

Color has meaning in particular contexts, and the meaning of color can impact behavioral performance. For example, the meaning of color about traffic rules (blue/green and red mean "go" and "stop" respectively) influences reaction times (RTs) to signals. Specifically, in a Go/No-go task, RTs have been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). However, the neurophysiological background of this phenomenon has not been fully understood. The purpose of this study was to investigate the brain oscillatory activity associated with the effect of meaning of color on RTs in the Go/No-go task. Twenty participants performed a Blue simple reaction task, a Red simple reaction task, a Blue Go/Red No-go task, and a Red Go/Blue No-go task. We recorded responses to signals and electroencephalogram (EEG) during the tasks and evaluated RTs and changes in spectral power over time, referred to as event-related synchronization (ERS) and event-related desynchronization (ERD). The behavioral results were similar to previous studies. The EEG results showed that frontal beta ERD and theta ERS were greater when signals were presented in blue than red color in both simple reaction and Go/No-go tasks. In addition, the onset of theta ERS was delayed in the Red Go than Blue Go trial in the Go/No-go task. The enhanced beta ERD may indicate that blue signals facilitate motor response, and the delayed onset of theta ERS may indicate the delayed onset of cognitive process when responding to red signals as compared to blue signals in the Go/No-go task. Thus, this delay in cognitive process can be involved in the slow response in the Red Go/Blue No-go task.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Tiempo de Reacción/fisiología , Encéfalo/fisiología , Sincronización Cortical/fisiología
5.
Cereb Cortex ; 33(22): 11157-11169, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37757479

RESUMEN

Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.


Asunto(s)
Mapeo Encefálico , Señales (Psicología) , Adulto , Humanos , Caminata , Encéfalo , Espectroscopía Infrarroja Corta
7.
J Physiol Anthropol ; 42(1): 10, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337272

RESUMEN

BACKGROUND: Synchronous finger tapping to external sensory stimuli is more stable for audiovisual combined stimuli than sole auditory or visual stimuli. In addition, piano players are superior in synchronous tapping and manipulating the ring and little fingers as compared to inexperienced individuals. However, it is currently unknown whether the ability to synchronize to external sensory stimuli with the ring finger is at the level of the index finger in piano players. The aim of this study was to compare the effect of piano experience on synchronization stability between the index and ring fingers using auditory, visual, and audiovisual combined stimuli. METHODS: Thirteen piano players and thirteen novices participated in this study. They were instructed to tap with their index or ring finger synchronously to auditory, visual, and audiovisual combined stimuli. The stimuli were presented from an electronic metronome at 1 Hz, and the tapping was performed 30 times in each condition. We analyzed standard deviation of intervals between the stimulus onset and the tap onset as synchronization stability. RESULTS: Synchronization stability for visual stimuli was lower during ring than index finger tapping in novices; however, this decline was absent in piano players. Also, piano players showed the higher synchronization stability for audiovisual combined stimuli than sole visual and auditory stimuli when tapping with the index finger. On the other hand, in novices, synchronization stability was higher for audiovisual combined stimuli than only visual stimuli. CONCLUSIONS: These findings suggest that improvements of both sensorimotor processing and finger motor control by piano practice would contribute to superior synchronization stability.


Asunto(s)
Percepción Auditiva , Percepción Visual , Humanos , Dedos , Desempeño Psicomotor , Movimiento
8.
Neuroscience ; 517: 50-60, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907432

RESUMEN

Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously. Fourteen healthy adults (five females) performed the 2-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after three different stimulation conditions: tSMS over the left DLPFC, tSMS over the right DLPFC, and sham stimulation. Our preliminary results revealed that while tSMS over the left and right DLPFC impaired working memory performance to a similar extent, the impacts of tSMS on brain oscillatory responses were different between the left and right DLPFC stimulations. Specifically, tSMS over the left DLPFC increased the event-related synchronization in beta band whereas tSMS over the right DLPFC did not show such an effect. These findings support evidence that the left and right DLPFC play different roles in working memory and suggest that the neural mechanism underlying the impairment of working memory by tSMS can be different between left and right DLPFC stimulations.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Humanos , Memoria a Corto Plazo/fisiología , Corteza Prefontal Dorsolateral , Corteza Prefrontal/fisiología , Estimulación Magnética Transcraneal/métodos , Encéfalo , Fenómenos Magnéticos , Estimulación Transcraneal de Corriente Directa/métodos
10.
Neurosci Lett ; 797: 137079, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36657634

RESUMEN

In animal models, oscillations of local field potentials are entrained by nasal respiration at the frequency of breathing cycle in olfactory brain regions, such as the olfactory bulb and piriform cortex, as well as in the other brain regions. Studies in humans also confirmed these respiration-entrained oscillations in several brain regions using intracranial electroencephalogram (EEG). Here we extend these findings by analyzing coherence between cortical activity and respiration using high-density scalp EEG in twenty-seven healthy human subjects. Results indicated the occurrence of significant coherence between scalp EEG and respiration signals, although the number and locations of electrodes showing significant coherence were different among subjects. These findings suggest that scalp EEG can detect respiration-entrained oscillations. It remained to be determined whether these oscillations are volume conducted from the olfactory brain regions or reflect the local cortical activity.


Asunto(s)
Encéfalo , Cuero Cabelludo , Animales , Humanos , Electroencefalografía/métodos , Respiración , Bulbo Olfatorio
11.
PLoS One ; 17(12): e0279477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548285

RESUMEN

During submaximal isometric contraction, there are two different load types: maintenance of a constant limb angle while supporting an inertial load (position task) and maintenance of a constant force by pushing against a rigid restraint (force task). Previous studies demonstrated that performing the position task requires more proprioceptive information. The purpose of this study was to investigate whether there would be a difference in cutaneous information processing between the position and force tasks by assessing the gating effect, which is reduction of amplitude of somatosensory evoked potentials (SEPs), and cutaneomuscular reflex (CMR). Eighteen healthy adults participated in this study. They contracted their right first dorsal interosseous muscle by abducting their index finger to produce a constant force against a rigid restraint that was 20% maximum voluntary contraction (force task), or to maintain a target position corresponding to 10° abduction of the metacarpophalangeal joint while supporting a load equivalent to 20% maximum voluntary contraction (position task). During each task, electrical stimulation was applied to the digital nerves of the right index finger, and SEPs and CMR were recorded from C3' of the International 10-20 system and the right first dorsal interosseous muscle, respectively. Reduction of the amplitude of N33 component of SEPs was significantly larger during the force than position task. In addition, the E2 amplitude of CMR was significantly greater for the force than position task. These findings suggest that cutaneous information processing differs with load type during static muscle contraction.


Asunto(s)
Dedos , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiología , Dedos/fisiología , Contracción Muscular/fisiología , Reflejo/fisiología , Piel/inervación , Contracción Isométrica/fisiología , Electromiografía
12.
J Neuroeng Rehabil ; 19(1): 129, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424652

RESUMEN

BACKGROUND: Transcranial static magnetic field stimulation (tSMS) using a small and strong neodymium (NdFeB) magnet can temporarily suppress brain functions below the magnet. It is a promising non-invasive brain stimulation modality because of its competitive advantages such as safety, simplicity, and low-cost. However, current tSMS is insufficient to effectively stimulate deep brain areas due to attenuation of the magnetic field with the distance from the magnet. The aim of this study was to develop a brand-new tSMS system for non-invasive deep brain stimulation. METHODS: We designed and fabricated a triple tSMS system with three cylindrical NdFeB magnets placed close to each other. We compared the strength of magnetic field produced by the triple tSMS system with that by the current tSMS. Furthermore, to confirm its function, we stimulated the primary motor area in 17 healthy subjects with the triple tSMS for 20 min and assessed the cortical excitability using the motor evoked potential (MEP) obtained by transcranial magnetic stimulation. RESULTS: Our triple tSMS system produced the magnetic field sufficient for neuromodulation up to 80 mm depth from the magnet surface, which was 30 mm deeper than the current tSMS system. In the stimulation experiment, the triple tSMS significantly reduced the MEP amplitude, demonstrating a successful inhibition of the M1 excitability in healthy subjects. CONCLUSION: Our triple tSMS system has an ability to produce an effective magnetic field in deep areas and to modulate the brain functions. It can be used for non-invasive deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Estimulación Magnética Transcraneal , Humanos , Voluntarios Sanos , Potenciales Evocados Motores , Campos Magnéticos
13.
BMC Musculoskelet Disord ; 23(1): 768, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953812

RESUMEN

BACKGROUND: Near-falls should be detected to prevent falls related to the earlier ambulation after Total knee arthroplasty (TKA). The quadriceps weakness with femoral nerve block (FNB) has led to a focus on adductor canal block (ACB). We purposed to examine the risk of falls and the earlier ambulation in each continuous infusion nerve block. METHODS: Continuous infusion nerve block (FNB or ACB) was performed until postoperative day (POD) 2 or 3. Pain levels and falls/near-falls with knee-buckling were monitored from POD 1 to POD 3. The score on the manual muscle test, MMT (0 to 5, 5 being normal), of the patients who could ambulate on POD 1, was investigated. RESULTS: A total of 73 TKA cases, 36 FNB and 37 ACB, met the inclusion criteria. No falls were noted. But episodes of near-falls with knee-buckling were witnessed in 14 (39%) cases in the FNB group and in 4 (11%) in the ACB group (p = 0.0068). In the ACB group, 81.1% of patients could ambulate with parallel bars on POD 1, while only 44.4% of FNB patients could do so (p = 0.0019). The quadriceps MMT values in the ACB group was 2.82, significantly higher than 1.97 in the FNB group (p = 0.0035). There were no significant differences in pain as measured with a numerical rating scale (NRS) and rescue analgesia through POD 3. CONCLUSION: ACB was associated with significantly less knee-buckling and earlier ambulation post-TKA, with better quadriceps strength. Our study indicated the incidence of falls and near-falls with continuous infusion nerve blocks, and support the use of ACB to reduce the risk of falls after TKA. It is suggested that a certain number of the patients even with continuous ACB infusion should be considered with the effect of motor branch to prevent falls.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Bloqueo Nervioso , Analgésicos Opioides , Anestésicos Locales , Artroplastia de Reemplazo de Rodilla/efectos adversos , Nervio Femoral , Humanos , Fuerza Muscular , Bloqueo Nervioso/efectos adversos , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/etiología , Dolor Postoperatorio/prevención & control , Proyectos Piloto , Estudios Retrospectivos , Caminata
14.
Brain Behav ; 12(7): e2681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701382

RESUMEN

INTRODUCTION: Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS: We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS: The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION: These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.


Asunto(s)
Desempeño Psicomotor , Espectroscopía Infrarroja Corta , Electroencefalografía , Retroalimentación , Humanos , Movimiento/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
15.
Heliyon ; 8(5): e09469, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647346

RESUMEN

Prior knowledge of color, such as traffic rules (blue/green and red mean "go" and "stop" respectively), can influence reaction times (RTs). Specifically, in a Go/No-go task, where signals were presented by a light-emitting diode (LED) lighting device, RT has been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). In recent years, a driving simulator has been shown to be effective in evaluation and training of driving skills of dementia and stroke patients. However, it is unknown whether the change in RT observed with the LED lighting device can be replicated with a monitor presenting signals that are different from the real traffic lights in terms of depth and texture. The purpose of this study was to elucidate whether a difference in visual modality (LED and monitor) influences the effect of prior knowledge of color on RTs. Fifteen participants performed a simple reaction task (Blue and Red signals), a Blue Go/Red No-go task, and a Red Go/Blue No-go task. Signals were presented from an LED lighting device (Light condition) and a liquid crystal display (LCD) monitor (Monitor condition). The results showed that there was no significant difference in simple RT by signal color in both conditions. In the Go/No-go task, there was a significant interaction between the type of signal presentation device and the color of signal. Although the RT was significantly longer in the Red Go/Blue No-go than Blue Go/Red No-go task in the Light condition, there was no significant difference in RT between the Blue Go/Red No-go and Red Go/Blue No-go tasks in the Monitor condition. It is interpreted that blue and red signals presented from the LCD monitor were insufficient to evoke a perception of traffic lights as compared to the LED. This study suggests that a difference in the presentation modality (LED and monitor) of visual information can influence the level of object perception and consequently the effect of prior knowledge on behavioral responses.

16.
Healthcare (Basel) ; 10(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327005

RESUMEN

Gait asymmetry is common after stroke and is a major risk factor for falls. In particular, temporal gait asymmetry often remains in the chronic stage of stroke. However, health insurance does not cover rehabilitation for patients with chronic stroke in many countries. Accordingly, it is undetermined whether individually supervised exercise therapy has beneficial effects on chronic hemiparetic gait. Patients with stroke (n = 25) more than 6 months after onset performed 70 min of individually supervised exercise twice weekly for 2 months in 16 sessions with qualified personnel. The intervention significantly reduced the pre-swing phase on the paretic side (mean = 91.8%, 95%CI, 84.8−98.8). In addition, there was a significant improvement in pre-swing phase symmetry in those with great asymmetry prior to the intervention (p = 0.022). Step length significantly increased after the intervention on both sides (non-paretic, p = 0.029; paretic, p = 0.0055). Walking time at both comfortable and maximum speeds was significantly shortened (comfortable, p = 0.0041; maximum, p < 0.0001). Our findings suggest that there remains scope to improve gait ability with individually supervised exercise therapy in patients with chronic stroke, whose functional recovery is often considered unlikely. This type of intervention may be a simple and effective option to improve gait parameters, including temporal asymmetry, even in patients with chronic stroke.

17.
Neurosci Lett ; 766: 136306, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699943

RESUMEN

Consolidated memories become transiently labile after memory reactivation, allowing update through reconsolidation. Although previous reports have indicated that the effects of post-reactivation training depend on the type of practice, it is unclear whether post-reactivation motor skill training of one limb can enhance the performance of the opposite limb. The present study aimed to investigate whether post-reactivation training (performing an isometric pinch force task) under two different training conditions using the left limb would enhance motor skills of the right limb through reconsolidation. Motor skills were measured in 38 healthy right-handed young adults during three sessions (S): S1 (right-hand training), S2 (memory reactivation and left-hand training 6 h after S1), and S3 (right-hand motor skill test 24 h after S1). Participants were assigned to one of three groups according to the task performed during S2: untrained controls (no training), left-hand training (constant force conditions), or left-hand training (variable force conditions). Left-hand training after memory reactivation during S2 significantly enhanced the motor skills of the right hand. Notably, constant training conditions significantly increased performance compared to the control group. These findings suggest that post-reactivation training in one limb effectively enhances motor skills in the opposite limb, and the effects depend on the training strategy, which has important implications for motor rehabilitation.


Asunto(s)
Lateralidad Funcional/fisiología , Aprendizaje/fisiología , Consolidación de la Memoria/fisiología , Destreza Motora/fisiología , Femenino , Humanos , Masculino , Adulto Joven
18.
PeerJ ; 9: e12250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707936

RESUMEN

BACKGROUND: Recently, event-related potentials (ERPs) evoked by skin puncture, commonly used for blood sampling, have received attention as a pain assessment tool in neonates. However, their latency appears to be far shorter than the latency of ERPs evoked by intraepidermal electrical stimulation (IES), which selectively activates nociceptive Aδ and C fibers. To clarify this important issue, we examined whether ERPs evoked by skin puncture appropriately reflect central nociceptive processing, as is the case with IES. METHODS: In Experiment 1, we recorded evoked potentials to the click sound produced by a lance device (click-only), lance stimulation with the click sound (click+lance), or lance stimulation with white noise (WN+lance) in eight healthy adults to investigate the effect of the click sound on the ERP evoked by skin puncture. In Experiment 2, we tested 18 heathy adults and recorded evoked potentials to shallow lance stimulation (SL) with a blade that did not reach the dermis (0.1 mm insertion depth); normal lance stimulation (CL) (1 mm depth); transcutaneous electrical stimulation (ES), which mainly activates Aß fibers; and IES, which selectively activates Aδ fibers when low stimulation current intensities are applied. White noise was continuously presented during the experiments. The stimulations were applied to the hand dorsum. In the SL, the lance device did not touch the skin and the blade was inserted to a depth of 0.1 mm into the epidermis, where the free nerve endings of Aδ fibers are located, which minimized the tactile sensation caused by the device touching the skin and the activation of Aß fibers by the blade reaching the dermis. In the CL, as in clinical use, the lance device touched the skin and the blade reached a depth of 1 mm from the skin surface, i.e., the depth of the dermis at which the Aß fibers are located. RESULTS: The ERP N2 latencies for click-only (122 ± 2.9 ms) and click+lance (121 ± 6.5 ms) were significantly shorter than that for WN+lance (154 ± 7.1 ms). The ERP P2 latency for click-only (191 ± 11.3 ms) was significantly shorter than those for click+lance (249 ± 18.6 ms) and WN+lance (253 ± 11.2 ms). This suggests that the click sound shortens the N2 latency of the ERP evoked by skin puncture. The ERP N2 latencies for SL, CL, ES, and IES were 146 ± 8.3, 149 ± 9.9, 148 ± 13.1, and 197 ± 21.2 ms, respectively. The ERP P2 latencies were 250 ± 18.2, 251 ± 14.1, 237 ± 26.3, and 294 ± 30.0 ms, respectively. The ERP latency for SL was significantly shorter than that for IES and was similar to that for ES. This suggests that the penetration force generated by the blade of the lance device activates the Aß fibers, consequently shortening the ERP latency. CONCLUSIONS: Lance ERP may reflect the activation of Aß fibers rather than Aδ fibers. A pain index that correctly and reliably reflects nociceptive processing must be developed to improve pain assessment and management in neonates.

19.
Medicine (Baltimore) ; 100(32): e26907, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34397924

RESUMEN

RATIONALE: Respiratory muscle paralysis due to low cervical spinal cord injury (CSCI) can lead to dysphagia. Noninvasive positive airway pressure (PAP) therapy can effectively treat this type of dysphagia. High-flow nasal cannula (HFNC) oxygen therapy can generate a low level of positive airway pressure resembling PAP therapy, it may improve the dysphagia. PATIENT CONCERNS: The patient was an 87-year-old man without preexisting dysphagia. He suffered a CSCI due to a dislocated C5/6 fracture, without brain injury, and underwent emergency surgery. Postoperatively (day 2), he complained of dysphagia, and the intervention was initiated. DIAGNOSIS: Based on clinical findings, dysphagia in this case, may have arisen due to impaired coordination between breathing and swallowing, which typically occurs in patients with CSCI who have reduced forced vital capacity. INTERVENTIONS: HFNC oxygen therapy was started immediately after the surgery, and swallowing rehabilitation was started on Day 2. Indirect therapy (without food) and direct therapy (with food) were applied in stages. HFNC oxygen therapy appeared to be effective because swallowing function temporarily decreased when the HFNC oxygen therapy was changed to nasal canula oxygen therapy. OUTCOMES: Swallowing function of the patient improved and he did not develop aspiration pneumonia. LESSONS: HFNC oxygen therapy improved swallowing function in a patient with dysphagia associated with respiratory-muscle paralysis following a CSCI. It may have prolonged the apnea tolerance time during swallowing and may have improved the timing of swallowing. HFNC oxygen therapy can facilitate both indirect and direct early swallowing therapy to restore both swallowing and respiratory function.


Asunto(s)
Médula Cervical/lesiones , Trastornos de Deglución/terapia , Terapia por Inhalación de Oxígeno/instrumentación , Insuficiencia Respiratoria/complicaciones , Parálisis Respiratoria/complicaciones , Traumatismos de la Médula Espinal/complicaciones , Anciano de 80 o más Años , Cánula , Médula Cervical/diagnóstico por imagen , Trastornos de Deglución/diagnóstico , Trastornos de Deglución/etiología , Humanos , Imagen por Resonancia Magnética , Masculino , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/terapia , Parálisis Respiratoria/diagnóstico , Parálisis Respiratoria/terapia , Traumatismos de la Médula Espinal/diagnóstico , Vértebras Torácicas
20.
Brain Sci ; 11(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199505

RESUMEN

Transcranial static magnetic field stimulation (tSMS) can modulate human cortical excitability and behavior. To better understand the neuromodulatory effect of tSMS, this study investigates whether tSMS applied over the left dorsolateral prefrontal cortex (DLPFC) modulates working memory (WM) performance and its associated event-related potentials (ERPs). Thirteen healthy participants received tSMS or sham stimulation over the left DLPFC for 26 min on different days. The participants performed a 2-back version of the n-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after the stimulation. We examine reaction time for correct responses, d-prime reflecting WM performance, and the N2 and P3 components of ERPs. Our results show that there was no effect of tSMS on reaction time. The d-prime was reduced, and the N2 latency was prolonged immediately after tSMS. These findings indicate that tSMS over the left DLPFC affects WM performance and its associated electrophysiological signals, which can be considered an important step toward a greater understanding of tSMS and its use in studies of higher-order cognitive processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...